Adaptation and regulation of uses of flood-prone area.

Groynes

Groynes are cross-shore structures designed to reduce longshore transport on open beaches or to deflect nearshore currents within an estuary. On an open beach they are normally built as a series to influence a long section of shoreline that has been nourished or is managed by recycling. In an estuary they may be single structures.

Breakwaters

A breakwater is a coastal structure (usually a rock and rubble mound structure) projecting into the sea that shelters vessels from waves and currents, prevents siltation of a navigation channel, protects a shore area or prevents thermal mixing (e.g. cooling water intakes). A breakwater typically comprises various stone layers and is typically armoured with large armour stone or concrete armour units (an exception are e.g. vertical (caisson) breakwaters). A breakwater can be built at the shoreline or offshore (detached or reef breakwater). This measure is not directly addressed to protect the coast in flood events, but can indirectly stabilize the coast by preventing erosion.

Reconnecting rivers to floodplains

River restoration contributes to flood risk management by supporting the natural capacity of rivers to retain water. As flood risk consists of damage times occurrence, flood risk management needs to reduce either the damage, or the likelihood of floods to occur, or both. River restoration reduces the likelihood of high water levels, and improves the natural functions of the river at same time.

EXAMPLE: Reconnecting lakes to the Yangtze River (CHN)

The 6,300 km long Yangtze River in China was facing a reduction of wetlands areas and flood retention capacity. In 2002, the World Wide Fund for Nature (WWF) initiated a programme to reconnect lakes in Hubei
Province to the Yangtze River through opening the sluice gates and facilitating sustainable lake
management. These wetlands can store floodwaters and therefore reducing vulnerability to flooding in the central Yangtze region.

EXAMPLE: Constructed wetlands to compensate for urbanization in souther Finland (FIN)

In Finland urban wetlands are being implemented to help improve water quality, absorb storm water volume and flow control, and improve the land-water habitats for urban communities. The wetlands are designed to respond to the needs and negative impacts of urbanization and therefore, public acceptance and multifunctional benefits are central to the design and implementation of the wetlands. The acceptance and understanding of the importance of urban dwellers is important and thus the project sought to demonstrate several benefits of functional wetlands.

EXAMPLE: Restoring Riparian Forests (BG)

Floodplain or riparian forests can be extremely important for the prevention of floods and landslides. Floodplain forests used to be widespread in Bulgaria, but today they are only partially preserved. WWF, in partnership with local Bulgarian partners began a project for restoration and conservation of natural riparian forests of native species along the rivers Danube and Maritsa.

EXAMPLE: The Ekostaden Augustenborg initiative, Malmö (SWE)

Augustenborg is a highly populated neighbourhood in Malmö, Sweden. In order to minimise flood risk, between 1998 and 2002, the ‘Ekostaden Augustenborg’ initiative installed a ‘Sustainable Urban Drainage System’ (SuDS). As part of the project, green roofs, ditches, retention ponds, green spaces and wetlands were created. Due to the installation of the SuDS, rainwater run-off has decreased by half.

EXAMPLE: Reopening Waterways in Oslo (NOR)

As in many other cities, the former dominating strategy for Oslo’s rivers and streams was to enclose them for practical reasons. This approach has changed and the City is actively reopening waterways to make them accessible for people, facilitate increased habitat for biodiversity and handle storm water more efficiently.

EXAMPLE: Wallasea Island Wild Coast project (UK)

The aim of the Wallasea Island Wild Coast project is to recreate a natural intertidal coastal marshland to combat the threat of climate-induced coastal flooding. The recreated mudflats, salt and brackish marshes, saline lagoons, and pastures will provide a range of habitats for coastal birds and other wildlife on the Essex coast.

EXAMPLE: Floating roads, Hedel (NL)

In 1996 the Dutch Department of Transport, Public Works and Water developed a program called ‘Roads to the Future,’ and a component of this project was the testing of a pilot floating road. The testing of the pilot took place in 2003 and aimed to create a 70 meter stretch of road in the town of Hedel, the Netherlands to mitigate against rising ground water levels. The floating road was designed to maintain access and flexibility in traffic and movement and prevent the isolation of a village otherwise cut off by flooding.

EXAMPLE: Relief channels, Wroclaw floodway system (PL)

Construction of the first components of the Wroclaw floodway system in Poland, one of the largest flood protection systems in Europe started in 2011. The project includes large scale improvements to the system of river channels and flood defenses which provide protection from the floodwaters of the River Odra that flows through Wroclaw. The goal of the project is to reduce the city’s flood risk to a probability of less than a 1000-year event.

Protecting and restoring reefs (coral and oyster)

Coral and oyster reefs are considered to be types of coastal wetlands. As a natural coastal defense they are a buffer for coastlines against waves. Reefs are threatened by rapid environmental change, making it very important to protect and restore reefs.

Rainwater harvesting

Water harvesting is when rainwater or stormwater is collected and stored for productive use later. It can be used for agriculture, drinking and more. Historically, rainwater harvesting is a common practice and has been used by many communities to support agriculture in sensitive and variable climates.

Sustainable Urban Drainage Systems (SUDS)

Approaches to manage surface water that take account of water quantity (flooding), water quality (pollution) biodiversity (wildlife and plants) and amenity are collectively referred to as Sustainable Urban Drainage Systems (SUDS). Such drainage systems not only help in preventing floods, but also improve water quality. In addition they can enhance the physical environment and wildlife habitats in urban areas.

Land and soil management practices

Soils face various risks related to erosion and pollution, however, adopting good land and soil management practices can help mitigate these negative impacts and in some cases can improve the overall productivity of soils. Such practices generally seek to improve soil structure and/or increase cover so as to reduce erosion, increase soil infiltration, and reduce runoff and transport of sediments. 

Marsh vegetation in intertidal and coastal zone

Saltmarsh and mudflats are usually located together with mudflats in front of the saltmarsh. Saltmarsh vegetation and saltmarsh creeks help manage floods by dissipating wave and tidal energy.  They are valuable barriers to the risks of flood, as they dissapte wave and tidal energy. Saltmarshes used in combination with other measures can have beneficial outcomes to managing climate change impacts. Even a small width of fronting saltmarsh can significantly reduce the height of sea walls required to achieve the same level of protection and thus also reduce initial construction costs. Having saltmarsh fronting will also significantly reduce maintenance costs due to the reduced exposure to wave and tidal energy.

Riparian buffers

Riparian buffers are vegetated, often forested, areas (“strips”) adjacent to streams, rivers, lakes and other waterways protecting aquatic environments from the impacts of surrounding land use (Enanga et al. 2010). Use of riparian buffers to maintain water quality in streams and rivers is considered to be a best forest and conservation management practice in many countries and is mandatory in some areas.

Wetland restoration

Wetland restoration can serve to reduce coastal flooding and erosion. It has also additional benefits like provide new habitats or improve the landscape for recreational purposes. Wetland restoration relates to the rehabilitation of previously existing wetland functions from a more impaired to a less impaired or unimpaired state of overall function.

Reafforestation in upland areas and buffer zones

Reafforestation and afforestation refer to to activities where trees are established on lands with no forest cover. The concept of reafforestation is usually used in reference to areas where there was recent forest cover. Reafforestation and afforestation activities, as well as existing forests, can help to reduce the occurrence and intensity of floods.

Flood and river bypasses

Lowland rivers and estuaries are naturally often flanked by vast areas of floodplain that was periodically flooded. The extent of inundation varied between years and formed an integrated system together with the river for moving water from the continental interiors to the ocean. With settlements and farming activities in these floodplain areas, these areas were disconnected to the river system.

With the idea of flood bypasses, these portions of the historic floodplain are reconnected to the river and become inundated during major flood events. They act as relief valves in two ways: conveyance and storage. If this attempt is used in area were these bypasses are not based on historic floodplains, the term relief channels is used.

Reopening culverts

Culverts typically carry flow in a natural stream or urban drainage channel under a road or railway. In some urban areas, the practice of culverting long lengths of a natural watercourse to gain space for urban development has traditionally been widespread. The practice is now generally recognized as having a negative impact on amenity and biodiversity. By reopening the culverts, these negative impacts can be reduced. In this way, the re-opened culverts can help manage stormwater and slowing down the flow of stormwater.

Flood storage systems

If fluvial systems don't have sufficient room for natural detention of floodwater in the floodplain, the development and management of flood storage within and adjacent to the natural floodplain is recommended and described in more detail in this measure. It addresses aspects like the process of selecting where to locate the flood storage, deciding how much storage is needed, how to measure the storage capacity, selecting appropriate flow control structures, analysing how the works will perform and making sure that the flood storage scheme is safe in extreme floods.

Drainage system management

Urban drainage systems need to be able to deal with both wastewater and stormwater whilst minimizing problems to human life and the environment, including flooding. Urbanization has a significant effect on the impact of drainage flows on the environment: for example, where rain falls on impermeable artificial surfaces and is drained by a system of pipes, it passes much more rapidly to the receiving water body than it would have done when the catchment was in a natural state. This causes a more rapid build-up of flows and higher peaks, increasing the risk of flooding (and pollution) in the receiving water. Many urban drainage systems simply move a local flooding problem to another location and may increase the problem. In many developed counties there is a move away from piped systems, towards more natural systems for draining stormwater.

Exposed elements elevation

'Elevation of buildings' and ' Land raising' are two separated measures with the aim to elevate exposed elements.

Dry proofing - sealing and shielding

Dryproofing makes a building watertight and substantially impermeable to floodwaters (FEMA, 1993). Compared to wetproofing, dryproofing requires a more reinforced building structure to withstand floodwater pressures and impact forces caused by debris. Other important factors to be considered in dryproofing are watertight closures for doors and windows, prevention of floodwater seepage through walls, and check valves to prevent reverse flows from sewage.

Wet proofing - Sealable buildings

Wetproofing (or wet floodproofing) is different from dryproofing in that it allows flood water to enter a structure, though both floodproofing methods have the same purpose, that of preventing damage to the structure and its contents and creating no additional threats to public safety (FEMA, 1993).

Artificial reefs

Artificial reefs are shore parallel rock mound structures set part way down the beach face. They may be long single structures or form a series of reefs extending for some distance alongshore. They are submerged for at least part of the tidal cycle, and are therefore less intrusive on the coastal landscape, have less impact on upper beach longshore processes and add a new intertidal habitat to sandy foreshores.